Pengangkutan Air dan Nutrisi pada Tumbuhan

 

4. Pengangkutan Air dan Nutrisi pada Tumbuhan

Konsep tekanan zat juga terdapat pada makhluk hidup seperti pengangkutan air dan nutrisi pada tumbuhan; tekanan darah pada sistem peredaran darah manusia; tekanan gas pada proses pernapasan manusia. 

Pengangkutan air dan nutrisi pada tumbuhan: pengangkutan air pada tumbuhan terjadi karena adanya jaringan xilem. Air dari dalam tanah diserap oleh rambut – rambut akar kemudian masuk ke sel epidermis melalui osmosis. Selanjutnya, air menuju korteks, endodermis dan perisikel. Kemudian air menuju xilem akar, xilem batang dan xilem daun. 

Berikut ilustrasi pengangkutan air masuk kedalam akar

pengangkutan air masuk kedalam akar

Air dapat diangkut naik ke daun dan diedarkan ke seluruh tubuh tumbuhan karena adanya daya kapilaritas batang yang dipengaruhi oleh gaya kohesi dan adhesi. Kohesi adalah kecenderungan molekul untuk berikatan dengan molekul lain yang sejenis. Adhesi adalah kecenderungan molekul untuk berikatan dengan molekul lain yang tak sejenis. 

Air dimanfaatkan dalam fotosintesis. Didalam daun, air mengalami penguapan (transpirasi). Penggunaan air oleh daun akan menyebabkan terjadinya tarikan terhadap ari dalam xilem sehingga air didalam akar dapat naik ke daun. 

Berikut ilustrasi pengangkutan air dari akar menuju daun : 

pengangkutan air dari akar menuju daun

Semua bagian tumbuhan memerlukan nutrisi. Nutrisi tumbuhan berupa gula dan asam amino hasil fotosintesis yang diedarkan oleh jaringan floem. Pengangkutan hasil fotosintesis dimulai dari daun (daerah berkonsentrasi gula tinggi) menuju ke seluruh tubuh (daerah berkonsentrasi gula rendah) dengan bantuan sirkulasi air yang mengalir melalui xilem dan floem. 

Berikut ilustrasi pengangkutan hasil fotosintesis dari daun ke seluruh tubuh tumbuhan : 

Tekanan Gas

 

3. Tekanan Gas

Ketika air dalam enlemeyer ditutup dengan balon karet kemudian dipanaskan akan membuat balon karet mengembang. Ini terjadi karena partikel gas dalam enlemeyer menerima kalor dari pemanasan, akibatnya gerakan partikel gas dalam enlemeyer semakin cepat dan terjadilah pemuaian sehingga tekanannya besar. 

Tekanan dalam enlemeyer diteruskan sama besar menuju balon, sehingga tekanan didalam balon lebih besar daripada tekanan gas diluar balon yang mengakibatkan balon mengembang. Berikut ilustrasi balon karet dan air dalam enlemeyer : 

(a): balon karet dan air dingin dalam enlemeyer, (b): balon karet dan elemeyer berisi air panas

Struktur balon udara

Balon udara dapat terbang karena massa jenis balon udara lebih rendah daripada massa jenis udara disekitarnya. Massa jenis balon dikendalikan oleh pilot perubahan temperatur pada udara dalam balon dengan menggunakan pembakar dibawah lubang balon. 

balon udara

Tekanan zat cair

 

2. Tekanan Zat Cair

Tekanan hidrostatis adalah kedalaman zat cair dan massa jenis zat cair mempengaruhi tekanan yang dihasilkan oleh zat cair. Semakin dalam zat cair, semakin besar pula tekanan yang dihasilkan. Semakin besar massa jenis zat cair, semakin besar pula tekanan yang dihasilkan. 

Pada zat cair, gaya (F) disebabkan oleh berat zat cair (W) yang berada diatas benda, sehingga : 

Karena berat
(W) = m × g 
m = ρ × V 
V = h × A 

Maka  atau  

Dengan :
P = tekanan (N/m2
m = massa benda (kg)
ρ = massa jenis zat cair (kg/m3
g = percepatan gravitasi (m/s2
h = tinggi zat cair (m)
V = volume (m3

Tekanan hidrostatis penting dalam merancang struktur bangunan penampungan air seperti pembangunan bendungan untuk PLTA. Para arsitek kapal selam memperhitungkan tekanan hidrostatis air laut agar kapal selam mampu menyelam ke dasar laut dengan kedalaman ratusan meter tanpa mengalami kebocoran atau kerusakan akibat tekanan hidrostatis. 

Berikut struktur bendungan :

Tekanan Zat dan Penerapannya

Ketika suatu benda dimasukkan dalam air, beratnya seperti berkurang. Ini disebabkan oleh gaya apung (Fa) yang mendorong benda keatas atau berlawanan dengan arah berat benda. Secara sistematis, dapat dituliskan : 

Fa = Wbu – Wba 

Sehingga, 

Wba = Wbu – Fa 

dengan : F= gaya apung (N)

Wba = berat benda di air (N)

Wbu = berat benda di udara (N) 

Berikut gaya pada batu yang tenggelam : 

Hukum Archimedes : jika benda dicelupkan kedalam zat cair, maka benda itu akan mendapat gaya keatas yang sama besar dengan berat zat cair yang didesak oleh benda tersebut. 

Menurut Archimedes, benda lebih ringan bila diukur dalam air daripada diukur diudara, karena di dalam air benda mendapat gaya keatas. Ketika di udara, benda memiliki berat mendekati yang sesungguhnya. Karena berat zat cair yang didesak atau dipindahkan benda adalah : 

Wcp = mcp × g dan mcp = ρcp × Vcp

Sehingga berat air yang didesak oleh benda adalah : 

Wcp = ρc × g × Vcp 

Berarti, menurut Archimedes, besar gaya keatas adalah : 

Fa = ρc × g × Vcp 

Dengan :
Fa = gaya apung (N) 
ρc = massa jenis zat cair (kg/m3
g = percepatan gravitasi (m/s2)
Vcp = volume zat cair yang dipindahkan (m3

Hukum Archimedes digunakan sebagai pembuatan dasar kapal laut dan kapal selam. Suatu benda dapat terapung atau tenggelam tergantung pada besarnya gaya berat (w) dan gaya apung (Fa).

Jika gaya apung maksimum lebih besar daripada gaya berat maka benda akan terapung. Jika gaya apung lebih kecil daripada gaya berat maka benda akan tenggelam. 

Jika gaya apung maksimum sama dengan gaya berat maka benda akan melayang. Gaya apung maksimum adalah gaya apung jika seluruh benda berada dibawah permukaan zat cair. 

Kapal laut dapat terapung karena ketika diletakkan secara tegak di lautan, kapal laut dapat memindahkan banyak air laut, sehingga kapal laut mendapat gaya keatas yang sama besar dengan berat kapal laut. Berikut struktur kapal laut di air : 

kapal selam

Kapal selam dapat terapung, melayang dan tenggelam di laut karena berat kapal selam dapat diperbesar dengan cara memasukkan air kedalam badan kapal dan dapat diperkecil dengan cara mengeluarkan air dari badan kapal. Ketika kapal selam akan tenggelam, air laut dimasukkan ke penampungan badan kapal. 

Berat kapal selam menjadi lebih besar daripada gaya keatas sehingga kapal selam tenggelam. Agar tidak tenggelam terus, air dalam badan kapal dikeluarkan dari penampungan sehingga berat kapal selam sama dengan gaya keatas dan kapal selam melayang dalam air. 

Saat kapal selam akan mengapung, air di penampungan badan kapal dikeluarkan sehingga volume kapal selam menjadi lebih kecil dari gaya keatas dan kapal selam dapat mengapung. Berikut mekanisme keluar masuknya air di badan kapal selam : 

Hukum Pascal : tekanan yang diberikan pada zat cair dalam ruang tertutup akan diteruskan ke segala arah dengan sama besar. Penerapan dari hukum Pascal yaitu pompa hidrolik. Berikut model pompa hidrolik : 

Jika penampang luas A1 diberi gaya dorong F1 maka tekanan yang dihasilkan adalah :

Menurut hukum pascal, tekanan diteruskan ke segala arah dengan sama besar, termasuk ke luas penampang A2. Pada penampang Amuncul gaya angkat Fdengan tekanan : 

Secara sistematis, diperoleh persamaan pompa hidrolik yaitu : 

 atau  

Dengan : 
P = tekanan (Pa) 
F1 dan F2 = gaya yang diberikan (N)
A1 dan A2 = luas penampang (m2)

Contoh soal Hukum Pascal

Luas penampang kecil (A1) besarnya 1 cm2 akan diberi gaya kecil (F1) sebesar 10 N sehingga menghasilkan tekanan (P) sebesar 10 N/cm2. Kemudian tekanan tersebut diteruskan ke luas penampang besar (A2) besarnya 100 cm2. Berapa gaya yang dihasilkan pada luas penampang (A2)? 

Jawab : 

Jadi, dengan memberikan gaya pada luas penampang kecil (A1) mampu menghasilkan gaya 1000 N pada luas penampang besar (A2). Berdasarkan prinsip inilah sehingga pompa hidrolik dapat mengangkat mobil ataupun motor.